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Colossal magnetoresistance manganites: a
laboratory for electron–phonon physics

By A. J. Millis

Department of Physics and Astronomy, The Johns Hopkins University,
3400 North Charles St., Baltimore, MD 21218, USA

It is argued that the ‘colossal’ magnetoresistance rare earth manganites present an
unusual opportunity for condensed matter physics because they are metals in which
the electron–lattice interaction is both unusually strong and tunable; i.e. variable
over a wide range by variation of chemical composition, strain, magnetic field and
temperature. The variability will allow systematic and controlled study of properties
of a high density of electrons strongly coupled to phonons.

Keywords: magnetoresistance; double exchange; polaron; transition metal oxide;
Jahn–Teller effect; charge ordering

1. Introduction

The ‘colossal’ magnetoresistance (CMR) rare earth manganese perovskites have been
of recent interest for their spectacular magnetoresistive properties (von Helmholt
et al . 1993; Jin et al . 1994), which could be of technological importance. It will
be argued here that they are of very substantial basic physics interest for quite
a different reason: in them the electron–lattice coupling is both unusually strong
and easily tunable. The materials therefore offer the opportunity to investigate in
detail the physics of a metallic density of electrons strongly coupled to phonons. In
what follows, the physics underlying the strong coupling and the tunability will be
outlined, the strength of the electron–phonon and electron–electron coupling will be
estimated, a few physical consequences will be discussed, and some open issues will
be mentioned. The estimate of the electron–phonon coupling corrects errors arising
from inconsistent normalization conventions in my previous work (Millis 1996; Millis
et al . 1998a).

The CMR materials crystallize in variants of the ‘ABO3’ perovskite structure. The
prototype compound is La1−xCaxMnO3 in which the A-site is randomly La or Ca and
the B-site is Mn. Variant compounds with the same crystal structure exist in which
different rare earths are substituted for La or different divalent alkali ions for Ca. A
wider class of variants, the so-called Ruddlestone–Popper series of layered materials,
has also been grown (Kimura et al . 1996; Mitchell et al . 1997). All materials share the
basic feature of a network of Mn ions six-fold coordinated by oxygen. The electrically
active sites are the Mn d-orbitals; in La1−xCaxMnO3 the number of d-electrons is
4 − x. The d-electrons are subject to a variety of interactions, of which the most
important are a crystal field of approximately cubic symmetry which splits the five-
fold degenerate d-levels into a lower-lying t2g symmetry triplet and two higher lying
states, which form an eg symmetry doublet if the crystal field has cubic symmetry,
and a strong on-site Hund coupling which requires that all d-electrons on a given Mn

Phil. Trans. R. Soc. Lond. A (1998) 356, 1473–1480
Printed in Great Britain 1473

c© 1998 The Royal Society
TEX Paper

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1474 A. J. Millis

ion have the same spin. The combination of these two interactions means that of the
4−x electrons on a given Mn ion, three go into the t2g levels and make up a Sc = 3/2
core spin, which turns out to be electrically inert in the compounds of interest, while
the remaining 1 − x electron goes into a linear combination of the eg levels and is
free to move from Mn ion to Mn ion, subject to the constraint that an eg electron
on site i must have its spin parallel to the core spin on that site. The Hund coupling
is, of course, not infinite, so three possible higher energy configurations are allowed:
flipping the eg electron relative to the t2g spin, putting the t2g electrons in a non-
maximal spin state, and putting the extra 1− x electron into the t2g levels instead
of into the eg levels. Recent optical data (Quijada et al . 1998) suggest that the eg
antiparallel configuration is about 3 eV higher than the eg parallel configuration; the
energies of the other two configurations have not been measured but are expected to
be higher; thus for most purposes the Hund energy may be taken to be infinite.

The main physical consequence of the Hund and crystal-field couplings is ‘double-
exchange’, a term introduced by Zener (1952) to denote the connection between
magnetic correlations and hopping. The point is that the very large Hund coupling
means that the amplitude for an electron to hop from one Mn site to another depends
on the relative orientation of the core spins on the two sites, because the electron
must get itself from being parallel with the core spin on its initial site to being par-
allel to the core spin on its final site. The hopping is therefore modulated by a spin
overlap factor which is maximal when the spins are parallel and minimal when they
are antiparallel. The consequences of double exchange have been studied in detail
by many authors (e.g. Anderson & Hasegawa 1955; de Gennes 1960; Kubo & Ohata
1972; Furukawa 1994; Millis et al . 1995; Mueller-Hartmann & DaGotto 1996; Li et
al . 1997). This work has established that if double-exchange is the only important
interaction then in the fully polarized ferromagnetic state the kinetic energy is max-
imal and the carriers are not scattered, while if the core spins become completely
uncorrelated (because, for example, the temperature is raised to well above the Curie
point), the kinetic energy decreases to about 2/3 of its maximal value. The kinetic
energy is therefore tunable by temperature and magnetic field, both of which tend
to align the spins. In addition, it is tunable by chemical composition (especially by
variation of the ‘A-site’ ion in the ‘ABO3 structure), for reasons of crystal chemistry
explained elsewhere (Hwang et al . 1995). The physics of double-exchange, although
fascinating in its own right and still not completely understood (Mueller-Hartmann
& DaGotto 1996), is insufficient to account for the physics of the CMR materials.
Most notably, although double-exchange implies that spin disorder leads to a modest
scattering rate for the electrons, the resulting resistivity is much too small to account
for the observed very large resistivities at T > TC (Millis et al . 1995, 1996a, b; Li et al .
1997). Additional interactions must be invoked, most notably the electron–phonon
one.

Several authors have argued that electron–electron interactions are also important
(Varma 1996; Nagaosa et al . 1998). In estimating the strength of these interactions,
a little care is called for. Intuition from atomic physics, along with photemission
evidence (Saitoh et al . 1996) suggests that the Mn d-electrons are subject to an
intrinsically strong Coulomb repulsion, perhaps of order 10 eV. However, although
we refer to them as d-electrons, the objects of interest for the low energy (less than
4 eV, say) physics are hybridized combinations of Mn d- and O p-electrons, as noted
by Saitoh et al . (1996). The effective interaction relevant for these states may be
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much less than the atomic 10 eV. I argue here that optical data show that the
electron–electron interaction is relatively weak and the electron–phonon interaction
is relatively strong. This conclusion is in agreement with band theory calculations
(Soloviev et al . 1996a, b), which indicate that the properties of LaMnO3 are well
described by the local spin density approximation, and that remaining discrepancies
may be resolved by adding a modest ‘U’ involving mainly t2g electrons.

LaMnO3 has a mean density of one eg electron per site, is an insulator with an
optical gap of slightly larger than 1 eV (Arima & Tokura 1995) and has a large-
amplitude lattice distortion away from the ideal perovskite structure (Ellemaans
et al . 1971). The fundamental low energy optical process involves moving an Mn
d-electron from one site to another. In simple terms, if the initial state has four d-
electrons (three t2g and one eg) per site then the final state has one site with three
d-electrons and one with five. The energy of this final state is given roughly by the
sum of the effective eg–eg Coulomb interaction and any lattice distortion energy.
Qualitatively, the final state energy is not large and is more or less determined by
the lattice distortion, leaving rather little room for the Coulomb interaction.

To see this more quantitatively, first consider the lattice distortion occurring in
LaMnO3. In the ideal perovskite structure, each Mn has six near-neighbour oxygen
ions; all Mn–O bonds are of equal length and all bond angles are 90◦. In the measured
structure all bond angles are still very near 90◦ but the bond lengths are unequal.
For the O ions displaced in the ±x direction, the measured lengths (Ellemaans et
al . 1971) are ux = 1.91 Å; for the y and z directions, uy = 2.17 Å and uz = 1.97 Å.
(This distortion actually alternates throughout the crystal in a (π, π, 0) pattern, but
this will not be important for the subsequent analysis.) The distortions imply a
mean Mn–O bond length of ū = 2.017 Å with an even parity biaxial (Jahn–Teller)
distortion superposed.

The driving force for the lattice distortion is the Jahn–Teller effect: in the ideal
perovskite structure the two eg orbitals are degenerate; an even parity distortion
of the MnO6 octahedron lowers the energy of one orbital and raises the energy
of the other, producing an energy gain if the eg orbital is preferentially occupied.
Conversely, a preferential occupancy of one orbital will induce a lattice distortion.
This physics may be expressed as an electron–lattice interaction. The magnitude of
the interaction constant depends on the manner in which the atomic displacements
are to be defined. Consider an MnO6 octahedron. Choose the Mn position to be
the origin of coordinates and let + and − subscripts denote O ions in the + and −
directions. Define vx = (ux+ − ux−) (and similarly for y and z). Then, if the spring
constant of an Mn–O bond is K, the harmonic energy of distortion for an octahedron
is

Eharm = 1
2
K

∑
a=x,y,z

(va)2. (1.1)

K may be estimated from the observed phonon spectrum. The highest-lying mode
is at ω ≈ 0.09 eV and presumably corresponds to an oxygen vibrating between two
Mn. Writing ω2 = 2K/Moxy yields K ≈ 15 eV Å−2.

Equation (1.1) implies that the conventionally defined ‘bulk modulus’ is B =
Ka2/3 ≈ 81 eV, while the Jahn–Teller shear modulus is C∗ = Ka2/2 ≈ 122 eV,
with the Mn–Mn distance a ≈ 4 Å. Then define v3 = (

√
3/2)(2vz − (vx + vy)), v1 =

(vx − vy) and Q = (v1, 0, v3)/a. These definitions are chosen so that the energy of a
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volume-preserving strain is

EJT = 1
2C
∗Q2. (1.2)

Finally, choose the |z2 − r2〉, |x2 − y2〉 basis for the electrons, and define τ =
(τ1, 0, τ3), with τ1,3 two of the usual Pauli matrices. Then we define the electron–
phonon Jahn–Teller coupling Hamiltonian HJT and coupling constant g via

HJT = (g/a)d†aτabdb ·Q. (1.3)

This equation expresses the fact that a Jahn–Teller distortion of magnitude Q
splits the energies of the appropriate linear combination of d-orbitals by an amount
∆ = 2gQ, while a difference in orbital occupancy ∆n exerts a force on the oxygen
displacements Q given by g∆n. From equations (1.2), (1.3) one finds that

Q = g∆n/C∗. (1.4)

In LaMnO3 the displacements v are vx = 0.214, vy = −0.306 vz = −0.096,
implyingQ = 0.13 and thus g∆n ≈ 16 eV. Turning the argument around then implies
that the observed lattice distortion implies a d-level splitting ∆ = (g∆n)2/C∗ ≈
2.1(∆n)2 eV. Note that this estimate is independent of the value of the Coulomb
interaction. This interaction will, of course, increase the value of ∆n and the energy
splitting ∆, but will not affect the coupling parameters we have deduced.

Now the optical data exhibit a gap of about 1.5 eV and an absorbtion peak at
about 2.5 eV (Arima & Tokura 1995). It is reasonable to identify the peak energy
as the d-level splitting; it is also reasonable to assume ∆n is a little less than unity.
One sees, then, that there is rather little room for the Coulomb interaction, which
may thus be safely neglected.

To summarize, a simple analysis of the structural and optical properties of LaMnO3
leads to the conclusion that in this compound (and therefore by extension in the
doped compounds) an electron–phonon interaction coming from a Jahn–Teller cou-
pling of distortions of the MnO6 octahedra to the eg level splitting is very strong and
is indeed the dominant interaction. The consequences of this interaction (and espe-
cially its interplay with the tunable kinetic energy) have been studied theoretically
in various approximations (Millis et al . 1996a, b; Millis 1996; Röder et al . 1996) and
the theoretical predictions have been at least qualitatively confirmed by experiments,
most notably optical conductivity measurements (Kaplan et al . 1996; Quijada et al .
1998) and determinations of the temperature dependence of local lattice distortions
(Billinge et al . 1996; Booth et al . 1998). A notable weakness of the theoretical cal-
culations to date has been the neglect of ‘intersite’ effects. All of the calculations
so far have been performed using one or another sort of local approximation which
neglects intersite correlations (e.g. those coming from the fact that each O ion is
shared between two Mn). These intersite correlations are obviously crucial in pro-
ducing the ‘charge order’ observed in manganites with x > 0.5 and are probably
important also for dopings in the ‘CMR’ regime. In particular, despite substantial
optical evidence for a large carrier mass enhancement at low frequencies, specific
heat data indicate only a small enhancement over band values. This can only be
explained if the electron self-energy has a strong momentum dependence, which is
inconsistent with the local approximations so far employed.

The strong coupling to Jahn–Teller phonons suggests that the materials may be
anomalously sensitive to applied strain, such as would occur if a film is grown on a
poorly lattice-matched substrate.
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Preliminary indications (Millis et al . 1998a, b) are that these effects are large,
raising the interesting possibility of tuning the physics with strain.

One crucial open question concerns the physics of layered ‘Ruddlestone–Popper’
materials. These tend to be much less conductive than the cubic materials at simi-
lar dopings, but also display ‘colossal’ magnetoresistance. I suggest that their more
insulating behaviour is due in part to the fact that the crystal structure implies a
substantial Jahn–Teller distortion is already frozen in (as in films with a large strain).
But the similar phenomoenology to the cubic materials suggests a more dynamical
phonon is also at work. Identifying this phonon (or ruling out its existence) is a very
important issue.

This work was supported in part by the US National Science Foundation under grant no. NSF-
DMR-9705482. The author has benefited from collaborations and discussions with many scien-
tists, including S.-W. Cheong, H. D. Drew, H. Y. Hwang, P. B. Littlewood, R. Mueller, B. I.
Shraiman, G. A. Thomas, Y. Tokura and C. M. Varma.
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Discussion

D. Khomskii (University of Groningen, The Netherlands). There are in principle
two sources of strong electron–lattice interactions: interactions with the Jahn–Teller
active phonons and an interaction with the breathing-type mode due to the presence
of formally two different valence states, Mn3+ and Mn4+. Is it clear which of them
is more important? In particular, in the experiment to measure the mean square
oxygen displacement mentioned by Dr Millis, what kind of distortion is measured?

A. J. Millis. The data of Booth et al . (1998) show clearly that the Mn–O bond
length distribution changes. This could be due either to breathing mode or Jahn–
Teller distortions of the Mn–O bond. The experiment unfortunately doesn’t tell you.
I like it because of what it does tell you, that this is a bond length. You’re not taking
this manganese oxygen bond and buckling it; it really is a change of the Mn–O
distance, but as yet they don’t have the resolution to know whether Jahn–Teller or
the other is dominant, but obviously both are important.

Now, the argument is that at least it has a strong flavour of Jahn–Teller. It’s just
the crude correspondence between these two, because in this compound there is only
Jahn–Teller. Right? But also I should say that one of the things that I just don’t
understand is if you go back to the lanthanum half–half composition (so, La0.5 and
Ca0.5 manganese oxide). Analysis of the bond lengths observed in the charge-ordered
compounds suggests that the Jahn–Teller and breathing distortions have about the
same amplitude.

Again, people, most notably S.-W. Cheong and collaborators, have found out where
all the oxygens go. That charge-ordered state again has big lattice distortions approx-
imately of this order of magnitude, and you can partition it into Jahn–Teller distor-
tion around the sites which are 4+, and a breathing about the sites which are 3+

and they are equal. One of the reasons you see it’s equal (and this is the part I never
understood) is that the ordered structures stack (if I’ve understood them well): in
one plane you have a chequerboard pattern 4+–3+–4+; you go to the next plane and
it’s exactly the same pattern. That’s their claim.

The only way that can work is the short axis of the Jahn–Teller distortion is
exactly the same as short axis made by the breathing distortion. Why it should do
that I have no idea, but that seems to be the case. From that it looks like they are
just exactly equal in importance (which seems mysterious).
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J. R. Cooper (University of Cambridge, UK ). Could Dr Millis say a little more
about the physical origin of the large intercept in the high temperature resistivity?

A. J. Millis. In the calculation one finds an intercept (ρ(T ) = ρ0 +AT with ρ0 6= 0)
when the phonon probability distribution has a double peak structure so that in the
T → 0 limit there is a frozen in lattice distortion. Of course, quantum effects have
not been included.

M. Rzchoswki (University of Wisconsin-Madison, USA). How similar is the high
temperature limit of the theory to activated hopping of small polarons and how sim-
ilar is the transition to a small to large polaron crossover, a traditional perspective?

A. J. Millis. Qualitatively, but not quantitatively. Forget about all this fancy
double-exchange stuff. What you see is that even when parameters in the calcu-
lation are such that the behaviour is insulating at low temperature it is very hard to
get the resistivity to be activated over a wide range. So the high temperature limit of
this theory for these couplings is not activated hopping of small polarons but when
the resistivity starts to take off, of course it does ultimately become activated.

In a sense all theories which give you activated behaviour give you the same
behaviour, so in a sense this asymptotic divergence is precisely activated hopping,
with exactly the energy gap found in the one-electron special function—I have
checked!. But the important difference with small polarons in the theory is in fact
nicely shown in the spectral function (this graph only shows one half of the spectral
function, there is a symmetrical half here), the gap that I am opening here, even in
the most resistive case, is small compared to the total bandwidth. Now in the usual
small polaron picture, I really just take an electron and I localize it strongly on the
lattice site. In a sense that means that the gap is large compared to the underlying
bandwidth of my electrons (of course, if I only have one electron, it’s down in the
bottom of its real band and its Fermi energy is tiny). So a small polaron means the
gap is enormous compared to the bandwidth and that is not what we have here.
We have gaps which are small, which can also be seen from the optics. So perhaps
another way to say it is that in optical conductivity in small polaron theory basically
the optical gap and the resistivity gap are the same because you don’t have a big
band of filled states, you just have a delta function so it has a crude similarity (you
do have upturns), but it’s not even close if you look at it in detail to small polarons.

Now, consider the small polaron to large polaron transition. Again, what occurs in
the model has a similar flavour but it’s not exactly the same for this reason: I think
there is enough oscillator strength in each of these that is very difficult to make a
tenable interpretation just in terms of individual non-overlapping polarons. There is
a concept here which I haven’t been able to formulate for myself in a satisfactory
way. But let me say something which is probably more pretentious than need be.
Everything in my calculation is happening in a metallic density of electrons. The
concepts that we have are either weakly scattered things or polarons. In this we have
some strong flavour of polarons but its not exactly that, so what I’m looking for is
the analogy of BCS theory. In superconductivity many of the phenomena have the
flavour of a pair of electrons and you only pay attention to Cooper pairs, but we
know that the Cooper pairs are strongly interacting and so forth and the real way to
describe them is with this BCS wave function. I am looking for, but haven’t found,
the analogous concept here.
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G. A. Gehring (University of Sheffield, UK ). To what extent have all Dr Millis’s
calculations been done with classical models for the lattice? Doesn’t that mean that
the lattice is therefore static and therefore you can’t have a real polaron in which
the lattice distortions follow the electron around?

A. J. Millis. I would not agree, because there’s a perfectly sensible classical limit
of the real polaron here. Basically, I guess the right way to say this is that classical
doesn’t mean static, it just means you can average over everything in an incoherent
way and you don’t have to worry about the details of time dependence. The way
hopping occurs is that an electron sits on a site until, by some thermal fluctuation,
the next site becomes a state that is able to accept it, and all that physics is in
this calculation. The right way to say it is that I’ve averaged over the dynamics in
a completely incoherent way. A better answer is that if you take this calculation for
the very low doping limit, you recover all the canonical classical results for polarons
in the high temperature limit.
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